16 - 21 July, 2023
General
Photos
Welcome Message
Organizing Committee
Contacts
Privacy and Non-Discrimination
Event Conduct and Safety
JSTARS Call for Papers
Program
Plenary Session
Plenary Speakers
Technical Program
Paper Search
Tutorials
Three Minute Thesis
Student Paper Competition
Social Program
For Young Professionals
TIE Events
Technical Tour
Registration
IGARSS 2023 Registration
On-Site Registration Desk
Invitation Letter Request
For Authors
Important Dates
Themes
Paper Submission
Author Invitation Letter
GRSS Travel Support
Sponsorship & Exhibition
Sponsor & Exhibit Registration
Current Sponsors
Current Exhibitors
Destination
Venue
Maps
VISA
Family Resources
Summer School
International Geoscience and Remote Sensing Symposium
Theme Tag Line
IGARSS 2023 Attendee Access
Technical Program
Session WEP.P20
Paper WEP.P20.8
WEP.P20.8
LEARNING UAV-BASED ABOVE-GROUND BIOMASS REGRESSION MODELS IN SPARSE TRAINING DATA ENVIRONMENTS
Felix Kröber, Universite Bretagne-Sud, France; Guglielmo Fernandez Garcia, Universite Rennes 2, France; Florent Guiotte, L'Avion Jaune, France; Florian Delerue, Universite Bordeaux, France; Thomas Corpetti, Universite Rennes 2, France; Sébastien Lefèvre, Universite Bretagne-Sud, France
Session:
WEP.P20: Forest and Vegetation Biomass Estimation II
Poster
Track:
Land Applications
Location:
Poster Area 20
Presentation Time:
Wed, 19 Jul, 14:15 - 15:45 Pacific Time (UTC -8)
Session Co-Chairs:
Sassan Saatchi, California Institute of Technology and Josef M. Kellndorfer, National Environmental Satellite, Data, and Information Service
Session Managers:
Ge Jiang and HUMAIRA SANAM and Ayoti Banerjee and Srashti Singh
Presentation
Not logged in.
Not logged in.
Discussion
Not logged in.
Resources
No resources available.
Session WEP.P20
WEP.P20.1: EFFECTS OF LEAF SENESCENCE CONDITION ON FOREST BIOMASS ACCURACY USING AVIRIS-NG DATA
LAXMIKANT SHARMA, RAJANI KANT VERMA, CENTRAL UNIVERSITY OF RAJASTHAN, India
WEP.P20.2: ESTIMATION OF CLM5.0 PARAMETERS FOR IMPROVING GRASSLAND PRODUCTIVITY SIMULATION IN HULUNBUIR, INNER MONGOLIA
qian yang, University of Chinese Academy of Sciences, China; Xiaohua Zhu, Guangzhou Ouyang, Lingling Ma, Aerospace Information Research Institute, Chinese Academy of Sciences, China
WEP.P20.3: FOREST ABOVEGROUND BIOMASS ESTIMATION FROM HIGH-RESOLUTION IMAGERY IN WUHAN CITY, CHINA
Ayzohra Mamat, Wuhan University, China; Xueyi Liu, China Agricultural University, China; Wenli Huang, Tianqi Feng, Wuhan University, China; Danxia Song, Central China Normal University, China
WEP.P20.4: GEOSPATIAL ESTIMATION OF HIGH FOREST BIOMASS USING GEDI & NATIONAL FOREST INVENTORY
Le Bienfaiteur Takougoum Sagang, University of California, United States; Samuel Favrichon, Sassan Saatchi, Jet Propulsion Laboratory, United States
WEP.P20.5: ESTIMATION OF ABOVE GROUND BIOMASS AND UNCERTAINTIES ASSESSMENT USING BI-TEMPORAL AIRBORNE LASER SCANNING IN DAXING’ANLING FOREST REGION, CHINA
Zhexiu Yu, Jianbo Qi, Huaguo Huang, Beijing Forestry University, China
WEP.P20.6: QUANTIFYING ABOVEGROUND BIOMASS IN THE CONTINENTAL U.S. USING GEDI WAVEFORM MEASUREMENTS
Wenge Ni-Meister, Alejandro Rojas, Hunter College of The City University of New York, United States
WEP.P20.7: WALL-TO-WALL ABOVE-GROUND BIOMASS ESTIMATION WITH ALOS-2 PALSAR-2 L-BAND SAR DATA AND GEDI
Yu Zhao, Xin Guo, Liheng Zhong, Jian Wang, Jingdong Chen, Ant Group, China
WEP.P20.8: LEARNING UAV-BASED ABOVE-GROUND BIOMASS REGRESSION MODELS IN SPARSE TRAINING DATA ENVIRONMENTS
Felix Kröber, Universite Bretagne-Sud, France; Guglielmo Fernandez Garcia, Universite Rennes 2, France; Florent Guiotte, L'Avion Jaune, France; Florian Delerue, Universite Bordeaux, France; Thomas Corpetti, Universite Rennes 2, France; Sébastien Lefèvre, Universite Bretagne-Sud, France
WEP.P20.9: PREDICTION OF HEMI BOREAL FOREST BIOMASS CHANGE USING ALOS-2 PALSAR-2 L-BAND SAR BACKSCATTER
Ivan Huuva, Henrik Persson, Jörgen Wallerman, Swedish University of Agricultural Sciences, Sweden; Lars Ulander, Chalmers University of Technology, Sweden; Johan E.S. Fransson, Linnaeus University, Sweden
Resources
No resources available.